Global Materials Perspective 2024

| Report

The global metals and mining industry is entering a new era. Historically, the industry has been driven by economic growth and the development of the middle class, resulting in major demand growth for materials such as steel, aluminum, and coal. While 80 percent of the industry today primarily consists of five materials—steel, coal, gold, copper, and aluminum—the landscape is rapidly changing as a result of the energy transition.

Indeed, the energy transition is first and foremost a physical transformation and the key challenges are therefore mostly physical, including the timely availability of materials embedded in low-carbon technologies (as detailed in McKinsey Global Institute’s 2024 report, The hard stuff: Navigating the physical realities of the energy transition). The energy transition is changing the materials landscape in three ways:

  • It accelerates demand growth for materials that are embedded in low-carbon technologies as these technologies typically require more embedded materials than their conventional counterparts. For example, battery electric vehicles (BEVs) are typically 15 to 20 percent heavier than comparable internal combustion engine (ICE) vehicles.
  • It triggers a long-term shift of the materials demand profile as low-carbon technologies require a different set of energy transition materials, which is gradually increasing the relative importance of these materials in the overall metals and mining portfolio.
  • It drives a long-term reduction of thermal coal in the energy system, currently the second largest material in metals and mining measured by revenue (2023).

Key materials for the energy transition are crucial to achieve decarbonization in the global energy system—and a lack of sufficient and affordable supply would therefore risk hindering the at-speed deployment of crucial low-carbon technologies. This report aims to provide a fact base and perspective on the need to scale these materials sustainably and affordably. We present a view of the possible road ahead, based on data from approved, publicly available sources, checking this view against three energy transition scenarios differentiated by the speed of the transition as well as two supply scenarios modeled by McKinsey Metal&MineSpans and based on asset level insights.

The road ahead will inevitably bring challenges, including how to accelerate the scaling of supply to meet new demand patterns, how to keep materials affordable so they can continue to support the energy transition and fuel economic growth, and how to improve the sustainability of the industry. This is not simple, especially in the context of an evolving global policy landscape that further increases uncertainty for investors.

However, we are hopeful that the industry’s response to the energy transition also presents substantial business opportunities for incumbents and new entrants alike, whether from conscious portfolio shifts, disruptive innovation, new business models, or the next wave of operational and capital expenditure (capex) advances, in some cases enabled by AI.

Move from plans to progress.

Move from plans to progress.

Sustainability matters. Together we’ll make it real.

Despite a turbulent environment, finances were healthy until 2023—yet 2024 has a gloomier outlook

Image description: A line graph shows four scenarios of global greenhouse gas emissions from 1990 to 2050, measured in gigatons (Gt) of CO2 equivalent per annum. The values from 1990 to 2022 are historical values, represented by one line that grows from approximately 38 Gt to 53. From 2022 to 2050, four lines diverge representing the four different scenarios. The Slow Evolution scenario line increases to 54 Gt in 2030 and then decreases to 46 by 2050. The Continued Momentum scenario line initially increases, then falls to 51 Gt in 2030, and then continues to decrease to 35 by 2050. The Sustainable Transformation scenario line decreases to 46 Gt by 2030 and then continues to decrease to 18 by 2050. The 1.5 degree pathway line decreases to 30 Gt in 2030 and then further decreases to eight in 2050. Source: IEA Global Energy Review 2022; IEA World Energy Balances. End of image description.

In metals and mining, around 80 percent of revenues stem from just five materials

Image description: A stacked area chart shows global primary energy demand by region under the Continued Momentum scenario, in million terajoules, between 1990 and 2050. The regions are separated into two overall categories: those with increasing demand, including India, ASEAN, Africa, Middle East, Latin America, China, and rest of world, and those with decreasing demand, including North America, OECD Europe, and OECD Asia–Pacific. Note: OECD stands for the Organization for Economic Cooperation and Development. From 2023 to 2050, the total of all segments is projected to grow by 11 percent, from approximately 620 million terajoules to approximately 690 million terajoules. From 2023 to 2050, the individual-region CAGR values are: India, 2.3 percent; ASEAN, 1.2 percent; Africa, 1.0 percent; Middle East, 0.6 percent; rest of world, 0.5 percent; Latin America, 0.5 percent; China, 0.3  percent; North America, -0.1 percent; OECD Europe, -0.8 percent; OECD Asia–Pacific, -0.9 percent. End of image description.

Supply is scaling faster than expected for several materials key to the transition

Image description: A stacked column chart shows global power generation by energy source, measured in thousand terawatt-hours (TTWh). Historical values are shown for 1995, 2010, and 2023, and separate projections based on the Slow Evolution, Continued Momentum, and Sustainable Transformation scenarios are shown for 2030, 2040, and 2050. The historical totals are: 1995, 13 TTWh; 2010, 19; 2023, 28. The 2030 totals by scenario are: Slow Evolution, 32 TTWh; Continued Momentum, 33; Sustainable Transformation, 36. The 2040 totals by scenario are: Slow Evolution, 43 TTWh; Continued Momentum, 50; Sustainable Transformation, 58. The 2050 totals by scenario are: Slow Evolution, 59 TTWh; Continued Momentum, 70; Sustainable Transformation, 79. The 2023–40 CAGR values for Continued Momentum, by energy source, are: other, 3 percent; solar, 12 percent; wind offshore, 15 percent; wind onshore, 10 percent; hydro, 1 percent; clean firm, 3 percent; gas, 0 percent; coal, -3 percent. Note: clean firm includes gas and coal plants with carbon capture, utilization, and storage (CCUS); nuclear; and hydrogen. The percentage share of renewables historical totals are: 1995, 19 percent; 2010, 18 percent; 2023, 32 percent. By 2050, the percentage share of renewables totals by scenario are projected to be approximately 65 percent for Slow Evolution, approximately 75 percent for Continued Momentum, and approximately 80 percent for Sustainable Transformation. The gigatons (Gt) of CO2 emissions historical totals are: 2010, approximately 11 Gt; 2023, 13 Gt. By 2050, the Gt of CO2 emissions totals by scenario are projected to be: approximately 11 Gt for Slow Evolution, approximately 9 Gt for Continued Momentum, and approximately 4 Gt for Sustainable Transformation. End of image description.

Accelerated technological innovation is creating increasing uncertainty for demand outlooks

Image description: A bar chart shows the number of yearly occurrences of day-ahead negative electricity prices in the EU plus Norway and Switzerland, from 2017 to 2023. Note: one occurrence corresponds to one hour during which prices are negative. The number of occurrences by year are: 834 in 2017, 510 in 2018, 925 in 2019, 1,923 in 2020, 952 in 2021, 558 in 2022, and 6,470 in 2023. From 2022 to 2023, the number of occurrences increased by 12 times. Source: European Union Agency for the Cooperation of Energy Regulators (ACER). End of image description.

Demand projections remain strong, with the majority of materials outpacing absolute historical growth

Image description: A stacked column chart shows global power consumption by sector under the Continued Momentum scenario, measured in thousand terawatt-hours (TTWh). The sectors are industry, buildings, hydrogen gas (H2) and synfuels, data centers, and transport. There are columns for the years 2000, 2010, 2023, 2030, and 2050. From 2000 to 2023, the total of all segments grows from 13 to 25 TTWh, representing a 3.0 percent per year increase. These are actual values, and the stacked columns are composed almost entirely of industry and buildings. From 2023 to 2050, forecast values show the total of all segments growing from 25 to 64 TTWh, which represents a 3.5 percent per year increase. Transport, data centers, and H2 and synfuels are forecast to grow by 2050 to comprise approximately 30 percent of the total. The CAGR values by segment from 2023 to 2050 are: transport, 10 percent; data centers, 8 percent; H2 and synfuels, 20 percent; buildings, 2 percent; industry, 3 percent.  Source: IEA; IRENA. End of image description.

Expected supply-demand in 2035 is more balanced compared with our 2023 perspective, but shortages are still anticipated for several materials

Image description: Three stacked area charts show global primary energy demand by fuel, in million terajoules, across the Sustainable Transformation, Continued Momentum, and Slow Evolution scenarios. There are three categories of fuel included: natural gas, oil, and coal. All three charts show 1990 to 2050, with the 2023–50 values representing the differing projections. Historical values from 1990 to 2023 increased from approximately 300 million terajoules, to approximately 430 million terajoules, with brief dips around 2009 and 2020. Going forward from 2023, all three scenarios are projected to plateau and then decline toward 2050. Sustainable Transformation has the shortest plateau and the most dramatic decline, reaching a 2050 total of approximately 240 million terajoules. This represents 39 percent of the total energy demand projected for 2050. Under this scenario, from 2023 to 2050, the CAGR for natural gas is -1 percent; for oil, -3 percent; and for coal, -5 percent. In the next chart, showing Continued Momentum, there is a longer plateau and less dramatic decline, reaching a 2050 total of approximately 360 million terajoules. This represents 52 percent of the total energy demand projected for 2050. Under this scenario, from 2023 to 2050, the CAGR for natural gas is 0 percent; for oil, -2 percent; and for coal, -3 percent. The last chart, representing Slow Evolution, has the longest plateau and smallest overall decline to 2050, reaching a final total of approximately 440 million terajoules. This represents 61 percent of the total energy demand projected for 2050. Under this scenario, from 2023 to 2050, the CAGR for natural gas is 1 percent; for oil, -1 percent; and for coal, -2 percent. End of image description.

As much as $5.4 trillion in capex and 270 gigawatts of power is needed by 2035 to scale up supply to meet expected demand

Image description: Four sets of stacked column charts show the system cost of electricity under the Continued Momentum scenario, measured in dollars per megawatt-hour ($MWh). The four charts represent the United States, Brazil, Germany, and the United Kingdom, each with stacked columns for the years 2024, 2030, 2040, and 2050. The stacks comprise three segments: distribution, transmission, and generation. For the United States, from 2024 to 2030, the total has a 0.4 percent CAGR, increasing from approximately 118 $MWh to approximately 121. From 2024 to 2050, the total has a -0.8 percent CAGR, decreasing from approximately 118 $MWh to approximately 97. The 2024–50 CAGR values by segment are: 0 percent for distribution, 2 percent for transmission, and -2 percent for generation. For Brazil, from 2024 to 2030, the total has a -1.0 percent CAGR, decreasing from approximately 107 $MWh to approximately 101. From 2024 to 2050, the total has a 0 percent CAGR, arriving at a total of approximately 108 $MWh in 2050. The 2024–50 CAGR values by segment are: 1 percent for distribution, 4 percent for transmission, and -2 percent for generation. For Germany, from 2024 to 2030, the total has a 0.5 percent CAGR, increasing from approximately 188 $MWh to approximately 195. From 2024 to 2050, the total has a 0.2 percent CAGR, increasing from approximately 188 $MWh to approximately 199. The 2024–50 CAGR values by segment are: 1 percent for distribution, 4 percent for transmission, and -3 percent for generation. For the United Kingdom, from 2024 to 2030, the total has a 2.2 percent CAGR, increasing from approximately 168 $MWh to approximately 191. From 2024 to 2050, the total has a 0.2 percent CAGR, increasing from approximately 168 $MWh to approximately 175. The 2024–50 CAGR values by segment are: 0 percent for distribution, 3 percent for transmission, and -1 percent for generation. End of image description.

Price increases will likely be required to incentivize sufficient supply to come online

Image description: A waterfall chart shows expected electricity demand growth in Europe from 2023 to 2030, in terawatt-hours (TWh), under the Continued Momentum scenario. Each step is divided into baseline growth and at-risk growth. Buildings contribute 17 TWh, with 100 percent share categorized as at risk. Transport has 70 TWh baseline growth and 58 at risk, thus approximately 45 percent share at risk. Industry has 58 TWh baseline growth and 66 at risk, thus approximately 55 percent share at risk. Green H2 has 79 TWh baseline growth and 22 at risk, thus approximately 20 percent share at risk. Data centers have 70 TWh baseline growth and 21 at risk, thus approximately 25 percent share at risk. Overall, these categories total 277 TWh baseline growth and 164 at risk, thus approximately 40 percent share at risk. In total, including baseline growth and at-risk growth, this is an increase of 461 TWh, or 16 percent, from 2023 to 2030. End of image description.

Over the next decade, total metal and mining emissions are estimated to decrease by a modest 15 percent

Image description: A series of stacked bar graphs shows the technology deployment pipeline in the EU-27 plus three (EU-27 plus Norway, Switzerland, and the United Kingdom) and the United States versus 2030 targets (in which tech deployment is measured to understand the gap between actual versus needed deployment), as a percentage of those targets. In low-carbon power generation, announced solar photovoltaic projects meet and exceed the target by 3 percent. Operational deployments in 2023 represent less than 15 percent of the 205 gigawatt (GW) target for offshore wind, approximately 60 percent of the 695 GW target for onshore wind, and 75 percent of the 705 GW target for solar photovoltaic. In clean commodities production, announced clean hydrogen projects exceed the target by 98 percent. Operational deployments in 2023 represent less than 5 percent of the 15 million metric-ton-per-annum (MTPA) target for clean hydrogen and approximately 10 percent of the 136 MTPA target for sustainable fuels. In end-use decarbonization, announced carbon capture, utilization, and storage (CCUS) projects exceed the target by 473 percent. Operational deployments in 2023 represent less than 30 percent of the 56 million target for electric vehicles, approximately 40 percent of the 156 million target for heat pumps, and approximately 30 percent of the 75 MTPA target for CCUS. Source: EHPA; EIA; Eurostat; IEA; Rystad; Wind 4C; McKinsey Energy Solutions; McKinsey Hydrogen Insights. End of image description.

Research shows less than 15 percent of customers indicate a willingness to pay premiums of around 10 percent for low-carbon materials

Less than 15 percent of customers indicate a willingness-to-pay of about 10 percent for low-carbon materials.

To request access to the data and analytics related to our Global Materials Perspective, or to speak to our team, please contact us.